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Abstract

Advanced simulation tools, particularly large-eddy simulation techniques, are becoming capable of making qual-
ity predictions of jet noise for realistic nozzle geometries and at engineering relevant flow conditions. Increasing
computer resources will be a key factor in improving these predictions still further. Quality prediction, however, is
only a necessary condition for the use of such simulations in design optimization. Predictions do not of themselves
lead to quieter designs. They must be interpreted or harnessed in some way that leads to design improvements. As
yet, such simulations have not yielded any simplifying principals that offer general design guidance. The turbulence
mechanisms leading to jet noise remain poorly described in their complexity. In this light, we have implemented and
demonstrated an aeroacoustic adjoint-based optimization technique that automatically calculates gradients that point
the direction in which to adjust controls in order to improve designs. This is done with only a single flow solutions and
a solution of an adjoint system, which is solved at computational cost comparable to that for the flow. Optimization
requires iterations, but having the gradient information provided via the adjoint accelerates convergence in a manner
that is insensitive to the number of parameters to be optimized.
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1. Background

Aircraft jet exhausts remain loud, which continues to motivate efforts to suppress their noise. Chevroned nozzle
lips [1, 2], nozzle-exit plasma actuators [3, 4], fluidic actuators [5], and many other techniques are currently being
explored for this objective. Seemingly without exception, a significant degree of parametric exploration is employed
in these efforts. This is because jet noise, unlike many flow phenomena, has no readily harnessed this-does-that
mechanistic description at fixed global flow conditions. We have Lighthill’s famous strong power-law sensitivity of
radiated power to velocity (“a high power, near the eighth” [6]), but no correspondingly simple guidelines exist for
what changes to make at fixed flow condition to suppress noise. The complex interplay between the jet turbulence and
radiated sound, added to the underlying complexity of the turbulence itself, is the root cause of this. It is a problem
of describing this complexity in a useful way. Acoustic analogy formulations, in which acoustic sources are crafted
based upon estimates of turbulence statistics [7, 8, 9, 10], have increased in their robustness to errors in these estimates
[11], but such formulations have not yet yielded a flexible general method because they depend upon describing the
complexity of the underlying turbulence in an accessible fashion.
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With simple tools lacking, efforts have focused on detailed simulations, which skirt explanation of how a jet
makes sound by brute-force representation of the process in sufficient detail. Initial direct numerical simulations,
which represented all turbulence scales in low-Reynolds-number model jets [12, 13], have advanced toward large-
eddy simulations [14, 15, 16, 17, 18, 19, 20], which promise to be more efficient by representing only the range of
scales that make the most significant acoustic radiation. When exactly such simulations will yield sufficiently accurate
predictions in engineering geometries at engineering Reynolds numbers can be argued, but given current effort and
the ever-increasing availability of massive computational resources, this time will come soon if it has not already.

As yet, however, such simulations have not simplified the jet noise problem. Source mechanisms have been
studied, but they have not produced definitive simplifying insights into the workings of the jet noise mechanism that
inform the designer regarding how to apply actuation or quiet a nozzle. They will be effective in providing predictions
for particular geometries and flow conditions, but a route to harness the full space-time data they provide is worthy of
pursuit.

The adjoint-based optimization procedure summarized and demonstrated in this paper provides a means of har-
nessing detailed simulations to identify means of noise reduction. The formulation provides the direction in an arbi-
trarily large space in which to adjust parameters to suppress noise. It does this at computational cost comparable to
solving the flow equations. Applied iteratively in a gradient-based minimization procedure, this can circumvent the
complexity of the flow and directly optimize control parameters that suppress sound. The availability of the gradient
accelerates convergence. Simulations can, of course, in principle be used as experiments in gradient-free optimization
of control parameters [21, 22]. The prohibitive computational expense of extensive searches of this kind with detailed
simulation can be avoided with the adjoint formulation. The flexibility of simulations in terms of geometric or actua-
tion parameters should allow them to optimize in a larger space than is accessible than with any particular hardware
configuration.

In the following section (section 2) we show how the numerical solution of the adjoint of the perturbed and
linearized flow equations can provide the needed gradient information. This adjoint solution requires full space-time
information about the flow field as is available in simulations. Section 3 shows examples of its applications in an
anti-sound model, in a two-dimensional mixing layer, and in three-dimensional turbulent flows, including a turbulent
jet.

We envision two applications of these techniques. As detailed simulation predictions become more accurate and
more quickly delivered, these optimizations can be used to avoid extensive parametric investigation. Iterations are still
necessary to optimize designs, but gradient based searches generally convergemuch faster than brute-force parametric
searches, however they are automated. The other application is investigation into sound generation mechanisms. At
the end of an optimization, the baseline loud flow has been perturbed by a control and made quieter. Having both the
loud and quieted versions of the same flow will potentially illuminate their underlying mechanisms. These and related
issues are discussed further in the concluding section 4.

2. Aeroacoustic adjoint-based optimization

Adjoint-based optimization has been used in several flow control and design applications. In summarizing its
application for aeroacoustic control, we here follow the aerodynamics optimization work of Jameson [23] and turbu-
lence control work of Bewley et al. [24]. More details of our formulation, implementation and optimization results
are available elsewhere [25, 26, 27, 28, 29], with the first two references providing the fullest details of the basic
formulation.

The objective is to reduce some function J that defines quantitatively the flow-control objective. For aeroa-
coustics, this will typically include some measure of acoustic radiation, but might also be formulated around some
theoretical noise-source model [30]. It might also include penalty terms that constrain the optimization by accounting
for the cost of the control. The cost functionJ thus in general depends upon the flow solution �q and upon the applied
control �F,

J = J(�q, �F). (1)

For our demonstration application, �F will be active flow actuation, but these techniques are not limited to this case.
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Wishing to reduce J , we construct its variation δJ with changes in the flow δ�q and control or design parameters
δ �F:

δJ =
(
∂J
∂�q

)

�F

δ�q +

(
∂J
∂ �F

)

�q

δ �F. (2)

In principal, different �F can be tried and δJ computed (or measured) to seek improvement. However, for general
complex controls with many adjustable parameters this can be arduous. With this direct approach, each δ �F requires a
new simulation to provide the δ�q, so the cost will remain prohibitive for high-fidelity simulations for some time.

Knowledge of how the flow system is constrained by the governing equations can be used to remove the need for
repeated flow solutions. We take the governing flow equations to be

N(�q) = �F, (3)

where N(�q) are the homogeneous equations and in our discussion we take �F to be a general right-hand side forcing.
Here we envision excitation of certain flow quantities by actuation, but the same basic formulation can be generalized
to shape optimization [23]. Defining

M(�q, �F) = N(�q) − �F = 0, (4)

we have the constraint that

δM =
(
∂M
∂�q

)

�F

δ�q +

(
∂M
∂ �F

)

�q

δ �F = 0. (5)

Multiplying (5) by Lagrange multiplier �q ∗ and subtracting this from (2) yields

δJ =
[(
∂J
∂�q

)

�F

− �q ∗ ·
(
∂M
∂�q

)

�F

]
δ�q +

⎡⎢⎢⎢⎢⎣
(
∂J
∂ �F

)

�q

− �q ∗ ·
(
∂M
∂ �F

)

�q

⎤⎥⎥⎥⎥⎦ δ �F. (6)

This is no more useful than (2) unless �q ∗ is chosen such that the first bracketed term is zero. Thus we require that �q ∗

solve
∂J
∂�q
= �q ∗ · ∂M

∂�q
. (7)

With this satisfied, δJ in (6) only depends upon �F; new δ�q are not required for each �F tried.
Let us now pick a specific J that seeks a minimum of acoustic pressure p − po over time t ∈ [t0, t1],

J =
∫ t1

t0

∫

R3
W(x)[p(x, t) − po]2 dxdt, (8)

where W(x) provides a weighting in space. Typically W will have compact support and can conveniently include a
Dirac δ-function so that J quantifies the acoustic intensity on some surface enclosing the noise source [25]. With the
J in (8),

∂J
∂�q
δ�q =

∫ t1

t0

∫

R3
2W(x)(p − po)∂p

∂�q
δ�q dxdt. (9)

The dot-product notation on the right-hand side of (6) should be interpreted as an inner product. Taking this to
correspond to the definition of J in (8) allows us to write

�q ∗ · ∂M
∂�q
δ�q =

∫ t1

t0

∫

R3
�q ∗
∂M
∂�q
δ�q dxdt = −

∫ t1

t0

∫

R3
δ�qM∗�q ∗ dxdt + b, (10)

where the final equality is by integration by parts, which yields boundary terms b to be discussed subsequently. For
now taking b = 0, substituting (9) and (10) into (7), and equating integrands yields a differential equation to be solved
for the adjoint field:

M∗(�q)�q ∗ = −2W(x)[p − po]∂p
∂�q
. (11)
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The �q ∗ solution removes the first term in (6). The final factor on the right-hand side is set simply by how p appears
as one of the flow variables in �q. If �q is a vector of primitive variables, one of them being pressure, then its effect
is to have this inhomogeneity in the adjoint system to appear only in the adjoint pressure equation. More details are
provided by Wei & Freund [25].

This integration by parts procedure is tedious for the compressible flow equations, but only needs to be done once
and is straightforward to test for correctness. It yields the adjoint of the perturbed and linearized governing equations,
which we report elsewhere [25, 27]. Here, we only mention the basic characteristics of these equations. Their form
is similar to the flow equations, with density-like, velocity-like and pressure-like dependent variables, but unlike the
flow equations they are linear in the �q ∗ quantities. Also, it is important to recognize that the operatorM∗ depends
upon the flow variables and operates on the adjoint variables: M∗(�q)�q ∗. This has an important implication for its
numerical solution. Since it has coefficients made up of the flow variables �q, to solve it numerically the space- and
time-dependentflow variables are needed. This can present a significant data management challenge, albeit one that is
getting ever simpler to overcome with the ever increasing storage capacities and data bandwidths of modern computer
systems.

The term b in (10) arises from boundaries at infinity and the initial and final times: b = b|x|→∞+bt0 +bt1 . Causality
indicates that at finite times a perturbation �F with compact support should have no effect infinitely far from the flow:
δ�q(|x| → ∞) = 0, so b|x|→∞ = 0. In practice radiation boundary conditions at some finite distance model this behavior,
just as they do in standard time-dependent flow solvers. There is also no �q perturbation to the flow before the control
�F starts taking effect at time t0, so bt0 = 0. The bt1 term is most conveniently treated by taking �q

∗ = 0 at time t1 and
then solving backward in time from this condition. This is compatible with the notion that control action in the past
is needed to alter the sound at some specific location at the present time. Optimizing that past control requires the
propagation of information in a time reversed fashion.

With �q ∗ solving (11), (6) directly relates δ �F and δJ . The result for the specific J defined in (8) is that

δJ =
⎡⎢⎢⎢⎢⎣
(
∂J
∂ �F

)

�q

− �q ∗ ·
(
∂M
∂ �F

)

�q

⎤⎥⎥⎥⎥⎦ δ �F = �q ∗ δ �F. (12)

This single adjoint solution �q ∗ thus contains the sensitivity of J to all the control variables �F, which is remarkably
simple for the control objective we specified,

δJ
δ �F
= �q ∗. (13)

This gradient information is used to iteratively update the control �F according to

�Fnew = �Fold − r δJ
δ �F
, (14)

where r is a generalized distance in the �F space. We have found standard conjugate gradient iterations, based upon
this type of line search in the �F space, to be effective [25].

Shape optimization is more complex, but can be formulated within this same basic framework. Geometric de-
pendence can be included via the mapping from variable physical x to fixed computational ξ coordinates. Different
mappings correspond to different shapes. Following common notation [23], we define

K̂i j =
∂xi
∂ξ j

J = det K̂ Ŝ = JK̂−1,

and can now consider Ŝ (or K̂) to be an adjustable control variable representing the geometry in terms of how it maps
it to fixed computational coordinates. This requires that the cost functionalJ be re-crafted to also depend upon Ŝ,

J =
∫

V
P(�q, Ŝ) dx +

∫

S
M(�q, Ŝ) dx,

where we have also generalized it to possibly depend upon both a volume and surface integral.
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Figure 1: Anti-sound control optimization demonstration: (a) schematic and pressure (b) before control and (c) after control.

3. Demonstration optimizations

3.1. Anti-sound

Though impractical for jet noise control, anti-sound is a straightforward and analytically tractable means of
demonstrating the optimization formulation. It also provides a means of validating its implementation in a com-
pressible flow solver. Consider the configuration shown in figure 1 (a). Sound is generated by some source region S .
This sound is to be canceled on Ω by a control noise source with support in C. This is most clear analytically if we
take S , Ω and C to all be points in space. Thus, the source at S is a monopole,

ptt − a2∇2p = s(t)δ(x − xs), (15)

with radiated sound

p(x, t) =
s(t − |x − xs|/a)
4π|x − xs| . (16)

This is a solution of N(�q) = 0 in the acoustic limit, assuming that the acoustic source is included in the operator N .
In an aeroacoustic flow, the flow itself makes the noise.

To cancel the sound on Ω, which for this discussion is a point in space xΩ, the adjoint field solves

p∗tt − a2∇2p∗ = −2δ(x − xΩ)p(xΩ, t), (17)

which corresponds to (11). The acoustic limit of the flow equations is self adjoint, hence (15) and (17) are essentially
the same. Recalling that p∗ is solved backward in time, we have an analytical solution

p∗(x, t) = −2 s(t + |x − xΩ|/a − |xΩ − xs|/a)
16π2|x − xΩ||xΩ − xs| . (18)

This adjoint field is used as in (14) to update the noise canceling control. With C also a point in space, it is clear
that this canceling source F(x, t)δ(x − xC) will thus have

F ∝ s(t + |xC − xΩ|/a − |xΩ − xs|/a), (19)

which accounts for the travel time from S to Ω minus the travel time from C to Ω and is well understood to be the
necessary time profile for a control at xC to cancel the noise at xΩ. The amplitudes can, of course, be determined
analytically in this case. Figures 1 (b-d) show the reduction of J in a simulation for the configuration pictured in
figure 1 (a) with finite size S , C and Ω [26].
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Figure 2: (a) Schematic of the mixing layer optimization configuration and visualization of vorticity magnitude (b) before control optimization and
(c) after J is reduced by ∼ 10dB by the optimized control.

3.2. A two-dimensional mixing layer

Control of a flow itself as a source of sound was first attempted on a randomly excited two-dimensional mixing
layer [25, 26], which is a geometric model of the near-nozzle region of a turbulent jet but a crude one without true
three-dimensional turbulence. Control was applied as shown schematically in figure 2 (a). The actuation was taken as
a general inhomogeneity in the flow equations with support C near the inflow boundary, and thus did not correspond
to any particular actuator. Thermal, momentum and mass sources were all considered, and all controls successfully
reducedJ by around 10dB. Though it is difficult to prove that there was no acoustic cancellation involved, extensive
testing showed that the control did cause a genuine change in the flow as a source of sound. The spectrum of the
control did not match suppressed frequencies in the sound field, as it would for acoustic cancellation control, and the
acoustic radiation was significantly suppressed in all directions, even thoughΩ was only below the mixing layer.

The most surprising result was how little the mixing layer was altered by the control. Figures 2 (b) and (c) show
that the vortical structures in the flow were superficially identical at the same times despite the significant reduction in
the radiated sound. Only a minor perturbation was needed to achieve this significant reduction in the sound. Detailed
investigation of the downstream evolution of these structures using POD modes as surrogates for Fourier analysis
in the streamwise direction showed that despite their superficial similarity before and after control, subtle phasing
changes smoothed the downstream advection of the flow structures. Before control, the two most energetic POD
modes bear little resemblance (figure 3 a) and their respective time trajectory in phase space is scrambled (figure 3
b). However, when the control is optimized, the two most energetic pressure modes resemble streamwise harmonic
functions that are out of phase by a factor of π/2 (figure 3 c). Their respective trajectories in the corresponding phase
diagram (figure 3 d) are clearly cyclical. Perfect sine and cosine modes and perfect circles in the a1(t)–a2(t) plane
would correspond to ideally “smooth” advection downstream. Such a case would also have no acoustic radiation [31].
POD modes based upon pressure are shown here; other quantities are reported elsewhere and show the same basic
behavior regardless of the specific type of control that is optimized [25].

This model flow showed that the adjoint-based optimization was indeed able to identify controls that perturbed
the nonlinear mixing layer into a relatively quiet state. It accomplished this automatically, with only a small amount
of energy [25].
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Figure 3: The most energetic POD modes and their phase map before and after application of control.

3.3. Control of turbulence noise

Two-dimensional free shear flows are at best crude models of actual three-dimensional jets, which are turbu-
lent. The apparently more chaotic nature of turbulence can be expected to reduce thedownstream influence of nozzle
excitations or changes in nozzle shape. It is clear, as discussed in section 1, that changes in geometry and cer-
tain types of actuation have suppressed jet noise, but there is no reason to believe that these are in any way op-
timal. As a step toward practical application to engineering flows and to investigate sound mechanisms in turbu-
lent flows, we have thus also implemented the adjoint-based control optimization framework in three dimensions.

0 25 50 75

-75

-50

-25

0

25 M = 0.9

M = 0

x

y
C

Ω

Figure 4: Three-dimensional spatial mix-
ing layer showing the vorticity magnitude,
near-field dilatation and control C and tar-
get Ω regions.

Our early efforts in this were focused on a three-dimensionalmixing layer,
as shown in figure 4. The inflow turbulence was generated in a long stream-
wise periodic mixing layer and fed into the computational domain using es-
tablished techniques [12, 32]. Figure 5 visualizes the adjoint at a series of
three times. Because the flow equations are self adjoint in the acoustic limit,
perturbations starting from Ω, where the adjoint is forced according to the
compact support of W(x) in (11), the adjoint pressure first propagates as an
adjoint sound wave. Once this wave encounters the mixing layer, it excites
hydrodynamic-like instabilities, which propagate upstream. This field is, in
effect, a visualization of the sensitivity of the acoustic pressure on Ω to right-
hand side forcing in the flow equations. This field is used in C to optimize the
control. This simulation ran through five conjugate gradient line-searches. No
minimum was achieve, but I(t), defined via

J =
∫ t1

t0

I(t) dt, (20)

shows obvious sound suppression in figure 6. This only starts after an initial
period during which forcing in C is incapable of affecting the sound on Ω due
to the finite perturbation speeds in the compressible fluid system.

With control demonstrated, it was decided to move onto the more rele-
vant jet geometry and employ large-eddy simulation methods to reduce the computational expense. We have now
incorporated the adjoint optimization procedure into a complex-geometry code [33]. Parameters match those of the
Mach 1.3 jet of Samimy et al. [34]. The simulated jet is visualize in figure 7 (a). The control region C is located just
downstream of the inflow boundary in a ring-shaped region covering the circumference of the jet. The nozzle is not
explicitly included in the computation; a mean flow computed with a RANS CFD matching the nozzle conditions of
the experiment [34] provides the inflow conditions. Thermal actuation is optimized, which corresponds loosely with
the plasma actuators used in the corresponding experiments.

Figure 7 (b) shows a comparison of radiated sound spectra with experimental data at distance 94 jet diameters
from the nozzle, elevated θ = 30◦ from the jet axis. The time series is short, but the agreement is encouraging for
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Figure 5: Visualization of an x–y plane of the adjoint pressure at z = 6.4 δω at three times.
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Strouhal numbers S tD � 1.0, which is the range of expected agreement given the low resolution of this large-eddy
simulation (2.8×106 mesh points). At this point a single line-search has be completed. As seen in figure 7 (c), there is
again an initial period where I(t) is unaffected due to the finite travel time of the control’s effect. This is followed by
a period where anti-sound cancellations might reduce I(t). After this period, which is estimated by the phase speed
of instabilities in the flow and the speed of sound out to Ω along the yellow trajectory in figure 7 (c), there is the
possibility of genuine reduction of the jet’s turbulence as a source of sound. In this final range I(t) is reduced by 37
percent. As with the two-dimensional and three-dimensional mixing layers, there are no obvious changes to the jet
flow by this control. These simulations are ongoing.

4. Summary and outlook

Though I have only provided a brief summary of results for adjoint-based optimization of flow control, it is clear
that the overall formulation is working. It has been validated for anti-sound cancellation models with known solutions
and used in extensive detail to study the sound mechanisms of a randomly excited, nonlinearly active two-dimensional
mixing layer [25, 26]. Extensive testing in this case showed that the flow itself was modified to be a significantly less
efficient sound source. The more chaotic character of turbulence presumably makes it more challenging to control
(and the results more challenging to interpret). Our initial results for a direct numerical simulation of a plane turbulent
mixing layer [27] and, most recently, a Mach 1.3 turbulent jet show that effective controls can also be found in these
cases. This is an important step toward application of these techniques for engineering design.

Even with the adjoint formulation, iterations are still needed to minimize J , but a key attraction of the adjoint-
based optimization is that their number is insensitive to the number of control parameters. For the Mach 1.3 jet
discussed in the previous section 280 × 106 independent control variables are optimized. This is clearly an absurd
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Figure 7: Adjoint-based control of a Mach 1.3 jet: (a) schematic of the control set up, (b) comparison of a far-field sound spectrum with experiment
(r = 94D, θ = 30◦) before control, and (c) the effect of control on I after one line search based on the initial δJ/δ �F.

number for describing any particular actuator, but even 10 or so parameters creates a huge space in which to undertake
trial-and-error optimization, even if it is assisted by automatic search algorithms. Having the sensitivity (13) is a
key means of accelerating optimization. Without it, larger numbers evaluations of the performance of any scheme are
needed to even get an estimate of the direction in which to move in the control space. With the adjoint formulation, this
gradient is provided by a single flow solution and solution of the adjoint system, which is of comparable computational
expense. Even single large-eddy simulations will remain expensive into the near future; the adjoint-based optimization
procedure potentially will facilitate harnessing them most effectively for identifying effective control.

There are many ways in which the algorithm itself can be improved to be more efficient. The Polak-Ribiere variant
of the conjugate gradient and Brent’s line minimization we currently use is standard [35]. Improving it with additional
knowledge of the current problem could potentially accelerate solutions significantly. As we proceed to optimize with
more practical actuator designs, constraints will have to be added to reduce the number of control parameters to what
can be realized in hardware. Any gradient-based optimization such as this risks finding local minima, thus missing
opportunities to reduce the noise further. Any parametric investigation is at risk for this, of course. Understanding the
control space also can avoid this, as can the intervention of a knowledgeable user.

In the two-dimensional mixing layer studies [25], reduced actuators were designed and tested, but a more general
framework for this will facilitate application to design. At this point we have only pursued active controls because they
are easily modeled with forcing terms in the governing equation. Adjoint-based shape optimization is also possible.
With a large-eddy simulation tool that can, say, predict the sound from a chevroned nozzle (e.g. Uzun et al. [16]),
adjoint-based optimization of such designs should be possible. This will avoid parametric investigation and perhaps
push noise reduction beyond that which has already been identified.

For this author, one of the most interesting questions concerns just how quiet a turbulent jet can be. Given the
strength of inflectional free shear flow instabilities, there is no hope of laminarizing a jet. So this question must
be asked assuming that the turbulence behaves more or less as it does in the baseline noisy jet. Before and after
comparisons of all the flows treated thus far have shown little, at times imperceptible (e.g. figures 2 b and c), changes
to the flow structures. The question is, then, what is the minimum noise a jet can make assuming that the turbulence
energy is unchanged. Such searches might uncover useful this-does-that type mechanisms of noise, though this is not
certain. Such a mechanism has eluded researchers for a long time, even now that full space- and time-resolved data
have become available in simulations [13].
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